If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9x^2-23x-12=0
a = 9; b = -23; c = -12;
Δ = b2-4ac
Δ = -232-4·9·(-12)
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-23)-31}{2*9}=\frac{-8}{18} =-4/9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-23)+31}{2*9}=\frac{54}{18} =3 $
| 45x-15=90 | | 18n+6+3+-6n=n+2n | | -27=33+m | | 4+6x=32x+4 | | 7(x+2)=9 | | 8n^2+26n+21=0 | | 6x=8x-32 | | 2x+12+28=90 | | 56x=3 | | 9x+23=3x+3 | | -4x/10=8 | | 13=17−4v | | 13.91+.08h=14.41+.09h | | 2(5x+4)+5=12x+80-3x | | 7=p+18÷3 | | 5n^2-8n-21=0 | | 2y–11= | | 22.00+24.50m=47.00+18.25m | | 3x11-4=2x11+7 | | (3x11)-4=(2x11)+7 | | t+8.5=19 | | x-5/6=41/3 | | T²-4t=21 | | 7x+3=7(4)+3= | | 3x+-5x-25=-2+3x-3 | | 5n^2-38n-16=0 | | 41=32-2(3-4w) | | x+5/6=41/3 | | 13-3c=4 | | (X-4)^2=2x+7 | | 1/4-x=(-1/8) | | 6h=324 |